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We introduce a method for solving the problem of an externally controlled electron spin in a quantum

dot interacting with host nuclei via the hyperfine interaction. Our method accounts for generalized

(nonunitary) evolution effected by external controls and the environment, such as coherent lasers

combined with spontaneous emission. As a concrete example, we develop the microscopic theory of

the dynamics of nuclear-induced frequency focusing as first measured in Science 317, 1896 (2007); we

find that the nuclear relaxation rates are several orders of magnitude faster than those quoted in that work.

DOI: 10.1103/PhysRevLett.107.047601 PACS numbers: 76.60.Es, 03.65.Yz, 73.21.La, 78.67.Hc

The nuclear environment in III–V quantum dots has
been recognized in recent years as the main source of
decoherence for the electron spin and thus constitutes an
important hurdle for quantum technologies with these
systems. The microscopic dynamics of the closed
electron-nuclear spin system have been investigated in
important recent theoretical contributions [1,2]. In these
works [1], controls have been represented as ideal, unitary
rotations of the electron spin, and the nuclear polarization
along the external field is taken to be unaltered during the
electron evolution. This no longer is the case in experi-
ments involving controls that couple the system to an
additional bath, which can exchange polarization with
the system. Such experiments are relevant because inco-
herent interactions are needed to initialize and read out the
system. These experiments in quantum dots (QDs) ob-
served dynamic nuclear polarization and nuclear feedback
effects [3–5]. While the details of the various experiments
differ, the main common feature is that an external control
interacts with the electron, and through the hyperfine in-
teraction the nuclear spins are also partially polarized. The
theories employed to describe such experiments are usu-
ally in the form of rate equations and some sort of Fermi
golden rule and typically invoke phenomenological terms.
Other theories [6] employed a more microscopic approach
but without including, e.g., feedback and a complete treat-
ment of control fields.

In this Letter, we develop a theory that addresses such
experiments involving nonunitary evolution of the electron
while still treating the electron-nuclear interaction micro-
scopically. Wemake use of the operator sum representation
of quantum evolution and its simplified form in the spin
vector (SV) representation and develop a theory that is
perturbative with respect to the hyperfine coupling. We
develop both Markovian and non-Markovian treatments,
and by comparison of the two we establish the validity
regime of the Markovian approximation.

In order to illustrate the power of our approach, we apply
it to the experiment of Ref. [3], a proper microscopic

theory of which is lacking to date. This experiment dem-
onstrated nuclear-induced focusing of the electron preces-
sion rates in a QD ensemble through the feedback
dynamics of the electron and nuclear spins. This mecha-
nism is largely driven by nonunitary evolution of the
electron spin, making it difficult to solve conventional
master equations to analyze the dynamics. Instead, a
phenomenological treatment was introduced in the
Supplemental Material of Ref. [3] and further developed
in Ref. [5]. Our microscopic solution does not invoke
phenomenological quantities and provides a unified de-
scription of the experiments in Refs. [3,5]. One of our
striking results is that the nuclear relaxation process is
several orders of magnitude faster than what is used in
Refs. [3,5].
The system we consider is a single electron trapped in a

QD and subject to an external in-plane static magnetic field
Bz, which splits the spin states along the z direction. The
electron interacts through the hyperfine contact interaction
withN nuclear spins in the QD (N � 105). There is also an
external time-dependent field acting on the electron, as
well as the photon bath that drives spontaneous emission
(electron-hole recombination). The total Hamiltonian is
H ¼ H0 þHhf þHp þHrad, where

H0 ¼ !eŜz þ �TjTihTj þ!n

X
i

Îiz; (1)

Hhf ¼
X
i

AiŜzÎ
i
z þ

X
i

Ai=2ðŜþÎi� þ Ŝ�ÎiþÞ; (2)

Hp ¼ �ðtÞj �xihTj þ H:c:; (3)

Hrad ¼
X
k

gkðjzihTj þ j�zihTjÞayk ei!kt þ H:c: (4)

In Eqs. (1)–(4), Ŝj (Îj) is the electron (nuclear) spin opera-

tor along the j axis, Ŝ� ¼ Ŝx � iŜy,�ðtÞ contains the pulse
information, jzi (j�zi) is the spin-up (-down) state along the
B-field direction, j �xi is the spin-down state along the
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optical axis x, jTi is the excited trion state, g is the coupling
to the radiation bath, and ay is the bath photon creation
operator. In the hyperfine HamiltonianHhf , the first term is
referred to as the Overhauser term, while the second is
called the ‘‘flip-flop’’ term.

The couplings �ðtÞ arise from periodic, ultrafast laser
fields like those used in Ref. [3]. Since Ai=!e � 1 for
moderate magnetic fields, we give a perturbative treatment
in this small parameter. We first focus on the zeroth-order
solution (electron spin periodically driven without nuclear
coupling). The primary effect of the pulses on the electron
spin dynamics is the creation or destruction of spin polar-
ization depending on the spin state. This arises from the
selection rules of the three-level system in conjunction
with the perpendicular external magnetic field. For con-
creteness, we consider �� pulses, in which case only j �xi is
coupled to the light and excited by it to the trion; see Fig. 1.
Depending on the pulse parameters, a certain population is
moved to the trion. This population subsequently decays
back to the spin subspace via spontaneous emission of a
photon. Because of the B field, the population decays
equally to the jxi and j �xi states, changing the electron
spin polarization [7].

This physics describes nonunitary evolution of the elec-
tron spin due to the coupling of the system to the photon
bath. To describe this mathematically in the spin subspace
we need a generalization of the usual unitary evolution
operator to a set of so-called Kraus operators fEjg which
transform the density matrix as

P
jEj�E

y
j [8]. These can be

found by solving for the nonunitary part of the evolution of
an arbitrary initial system density matrix and relating it to
the final density matrix. Following this standard procedure
[9] we find the followingKraus operators in the jxi; j �xi basis:

E1 ¼ 1 0
0 q

� �
; E2 ¼ 0 k

0 0

� �
; E3 ¼ 0 0

0 k

� �
;

(5)

where q ¼ q0e
i� and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� q20Þ=2

q
. The parameter q20

is the probability to go from j �xi to j �xi; it is related to
the pulse area and takes values from 0 to 1. The quantity
(1� q20) is related to the probability of population remaining

in the trion state after the passage of the pulse, and thus q0
quantifies the deviation from unitary dynamics in the qubit
subspace (for unitary evolution q0 ¼ 1). The parameter� is

the spin rotation angle caused by the pulse and is a function
of the detuning. We have therefore found 2D matrices to
describe the more complicated dynamics of the pulse fol-
lowed by spontaneous emission.
Between pulses, the evolution is simply Larmor preces-

sion under Bz, given by U ¼ e�i!eTRŜz , where TR is the
period of the pulse train. We are interested in finding the
steady-state electron spin. For this, the SV representation

[Se;j ¼ 2Trð�ŜjÞ] is most convenient as all the operations

act on the left side of the SV. As a result of the nonunitarity
of the evolution, in addition to the transformation of the SV
a new contribution is generated at each cycle:

SeðnTRÞ ¼ SðnÞe ¼ YeS
ðn�1Þ
e þ Ke; (6)

where we found that ðYeÞij ¼ 2
P

‘Tr½ŜiE‘UŜjU
yEy

‘ �,
ðKeÞj ¼ 2

P
‘Tr½ŜjE‘E

y
‘ �. In the limit n ! 1 the steady

state is Sð1Þ
e ¼ ð1� YeÞ�1Ke (the explicit expression is in

Ref. [9]). We therefore see that a 3� 3 matrix Ye and a
three-dimensional vector Ke are the quantities that deter-
mine the dynamics of the electron spin. Because its struc-
ture is convenient, we use the equivalent and more compact
4� 4 matrix that contains all the information:

Y e ¼
1 0 0 0

Ke;x Ye;xx Ye;xy Ye;xz

Ke;y Ye;yx Ye;yy Ye;yz

Ke;z Ye;zx Ye;zy Ye;zz

2
6664

3
7775: (7)

In this 4D representation, the steady-state SV Sð1Þ
e ¼

ð1; Sð1Þ
e;x ; S

ð1Þ
e;y ; S

ð1Þ
e;z Þ is the eigenvector of 1�Ye with ei-

genvalue 0. This more compact representation will prove
very useful when we introduce the nuclear spin.
Having solved the zeroth-order problem, we proceed to

the inclusion of the hyperfine interaction. For simplicity,
we assume that the nuclear spin has I ¼ 1=2. The nuclear
spins affect each other through their interactions with the

electron. When A
ffiffiffiffi
N

p
=!e � 1, where A is a typical value

of Ai, flip flops occur slowly so that multinuclear effects
such as dark state saturation [6] are negligible, and the
primary effect of the nuclear spins on the electron is a shift
of the precession frequency through the Overhauser term
(Overhauser shift). Therefore, we consider first a single
nuclear spin interacting with the electron and incorporate
multinuclear effects by shifting the electron Zeeman
frequency by an amount proportional to the net nuclear
polarization [3,5].
For a single nuclear spin interacting with the electron

spin via the hyperfine Hamiltonian, we use a SV represen-
tation, which in this case is 15D. For the type of control
used in Refs. [3,5], there are no nuclear effects during the
ultrashort (i.e., broadband) pulses, which do not distin-
guish between the electron spin eigenstates along the field
Bz. Therefore, the Kraus operators are simply tensor prod-
ucts between the Ej’s of Eq. (5) and the identity. Following

the same prescription as for the single spin, we define a
16D SV Si ¼ 4Trð�GiÞ, where � is the 4� 4 density

B 

xx

T

−σ

x

z

QD 

pulses
 

B field  

FIG. 1 (color online). Left: Experimental setup of Refs. [3,5].
Right: Relevant QD states and polarization selection rules.
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matrix of the two spins and the generators Gi are tensor

products of spin operators (including the identity)G4kþ‘ ¼
Ŝk � Î‘, where k and ‘ run from 0 to 3. With our conven-

tions, S0 ¼ 1. The 16D analog of Ye is given by Yij ¼
4
P

‘Tr½GiE‘Ue;nGjU
y
e;nE

y
‘ �. In general, S is not simply a

tensor product of the two individual SVs but contains
quantum correlations (entanglement).

The pulses are expected to ‘‘interrupt’’ the electron-
nuclear evolution only for q0 � 1, while entanglement
will build up when q0 	 1. Therefore, a Markovian ap-
proximation should be sufficient for short pulse train peri-
ods and pulses of strength q0 	 0 (as in Refs. [3,5]).

Markovian approximation.—To find an effective relaxa-
tion rate for the nuclear spin, we use the equation
Sðtþ TRÞ ¼ YSðtÞ for the 16D case. In the Markovian
approximation, we keep only the separable (tensor prod-

uct) part of S, i.e., S ¼ Sð1Þ
e � Sn, where we have used that

the time scales of evolution for the electron and the nuclei
are quite different [10], so that we can assume that the
electron steady state is reached quickly compared to the
nuclear dynamics [3,5,11,12]. The equation for the 4D
nuclear SV is then Snðtþ TRÞ ¼ YnSnðtÞ, where Yn ex-
plicitly contains electron SV components. Since the nu-
clear evolution is much slower than the pulse repetition
rate, we can coarse grain this equation and obtain a differ-
ential equation for the nuclear SV: d

dtSn ¼ 1
TR
ðYn � 1ÞSn,

which gives SnðtÞ ¼ eðYn�1Þt=TRSnð0Þ. For small flip-flop
coupling (but keeping the Overhauser term to all orders),
we find the two smallest eigenvalues of 1�Yn to be
�1 ¼ 0 and

�2 ¼ A2

!2
e

1þ S2e;z þ ðS2e � 1Þ cosðATR

2 Þ
1þ S2e;z þ ðS2e;z � 1Þ cosðATR

2 Þ sin
2 !eTR

2
; (8)

where Se is the length of the electron steady-state SV and
for brevity we have suppressed the superscript 1 [13].
The zero eigenvalue corresponds to the nuclear steady-
state SV, which to leading order in the flip-flop term is

Sð1Þ
n ¼ ð1; 0; 0; Sð1Þ

n;z Þ, where

Sð1Þ
n;z ¼ 2Se;z½sin2ðATR

4 Þ þ S2ecos
2ðATR

4 Þ�
1þ S2e;z þ ðS2e � 1Þ cosðATR

2 Þ : (9)

The nonzero eigenvalue �2 gives the nuclear relaxation rate
�n ¼ �2=TR. The single nucleus spin-flip rates, which are
generally different in the presence of nonzero polarization

[5], arew1� ¼ �nð1� Sð1Þ
n;z Þ=2, wherew1þ (w1�) is the rate to

flip from down (up) to up (down). Figure 2 shows that our
rates are orders of magnitude larger than those of Refs. [3,5].
The heuristic expressions took into account only that the
relaxation rates should vanish when TR is a multiple of the
electron spin precession period as well as the overall scale
factor A2=!2

e. The first of these features arises because an
electron spin synchronized with the pulses is unaffected by
them so that no nuclear relaxation takes place. The scale
factor is fixed by noting that energy conservation leads to a

suppression of hyperfine flip flops when !e 
 !n; only
virtual flip flops are allowed, and, since these must come in
pairs, their effect is second-order in A=!e.
Our theory reveals an additional dependence of the

relaxation rate �n on the orientation of the electron spin
that was overlooked by Refs. [3,5]. When the electron SV
is transverse to the B field (Se;z � 0 and Se 
 0), flip flops
are not suppressed by energy conservation and angular
momentum is freely transferred from the electron to the
nuclei, leading to a strong enhancement of �n. This is also
clear from Eq. (8), where the denominator is close to zero
when Se;z � 0 while the numerator remains finite due to

Se 
 0. These conditions are realized in the regime most
relevant for the experiments in Refs. [3,5] where q0 � 1,
that is, when the pulses drive most of the population out of
the qubit subspace, reorienting the electron spin along the
optical (x) axis. Note that the enhancement of �n depends
crucially on the openness of the system since the photon
bath acts as an angular momentum reservoir. Our predicted
time scale can be checked experimentally by measuring in
a single QD the frequency of the pump-probe signal at
various time scales. By systematically varying the B-field
and pulse parameters, the relaxation rates could be mapped
out as a function of the parameters.
The probability distribution for the net multinuclear

polarization m=2 is obtained from a kinetic equation for

0.2 0.4 0.6 0.8 1.0
qo
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-9

-8

log10(TR w1)±

FIG. 2 (color online). Plot of the log of the nuclear relaxation
ratesmultiplied byTR fromour current theory (upper set of curves)
with our Markovian approximation (solid line) and exact numeri-
cal (dashed line) as a function of q0. The lower curves are based on
Refs. [3,5] and are several orders of magnitude less. Pulse pa-
rameters are � ¼ �=2, TR ¼ 3900:3=!e, and A=!e ¼ 10�5.
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FIG. 3 (color online). The nuclear polarization probability
distribution with N ¼ 5000 nuclei and pulse parameters � ¼
�=4, q0 ¼ 0:2, and A=!e ¼ 10�5 and for (a) TR ¼ 797:9=!e

and (b) TR ¼ 800:3=!e, from our Markovian theory (blue, solid
line), the theory from Ref. [3] (red, dotted line), and the one from
Ref. [5] (green, dashed line).
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m, which is the difference in the number of spins pointing
up and down:

dPðmÞ
dt

¼ �X
�

�
w�ðmÞN �m

2

�
PðmÞ

þX
�
Pðm� 2Þw�ðm� 2Þ

�
N �m

2
þ 1

�
; (10)

where w�ðmÞ are the rates in the presence of nuclear
polarization m=2. These are found by implementing the
Overhauser shift w�ðmÞ ¼ w1�ð!e þmAÞ, where we have
assumed equal couplings for all nuclear spins [14].
Examples of the resulting distribution are shown in Fig. 3
for typical values of the parameters. In general, large TR

results in more peaks in PðmÞ and thus gives rise to a
greater degree of nuclear state ‘‘narrowing’’ (T�

2 is en-
hanced). Furthermore, the sharpest peaks occur at values
of m such that ð!e þmAÞTR is an odd integer multiple of
�, and the locations of these peaks can be controlled by
adjusting !eTR. A systematic exploration of the parameter
space can help tailor the nuclear state.

Beyond the Markovian approximation.—Our analysis
above provides analytic expressions for the nuclear dynam-
ics in the Markovian approximation, an approach valid for
q0 � 1 (see Fig. 2). Our formalism, however, is not in-
herently Markovian, and we now present an analytical non-
Markovian expression for the nuclear steady state. We
return to the 16D matrix Y and perform a perturbative
expansion in the coupling which is a controlled approxi-
mation in the hyperfine coupling. The steady-state nuclear
SV turns out to be

Sð1Þ
n ¼ c½1þ q20 � 2q0 cos�; ð1� q20Þ

� tanð!eTR=2Þ; q0!eTR sin��; (11)

where c is as in Ref. [15]. Nonzero x; y components arise
from expanding the Overhauser interaction in addition to
the flip flop in deriving Eq. (11). Figure 4 shows that the
dynamics becomes less Markovian as the pulses become
more unitary (q0 ! 1).

In conclusion, we have developed a formalism for ana-
lyzing experiments with generalized, nonunitary controls
on the electron spin confined in a QD and coupled to the
host nuclei. By applying it to the experiments of
Refs. [3,5], we have found that the nuclear relaxation is
orders of magnitude faster than previously thought. Our
method is, in general, non-Markovian and is applicable to
controls other than ultrafast lasers by an appropriate choice
of the Kraus operators. It can have wide application to
other systems, such as gated QDs and NV centers in
diamond [16]. An interesting application of the theory
would be to use it for the design of the final nuclear state.
This work was supported by LPS/NSA (E. B.) and in

part by ONR and LPS/NSA (S. E. E.). S. E. E. acknowl-
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FIG. 4 (color online). Nuclear steady-state SV z component as a
function of q0 for Markovian approximation Eq. (9) (red, dotted
line), analytical non-Markovian Eq. (11) (green, solid line),
and exact numerical (black, dashed line) for � ¼ �=2, TR ¼
3900:3=!e, and A=!e ¼ 10�5. The inset shows Sn;x and Sn;y.
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